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Abstract: The molybdate-bearing mineral szenicsite, Cu3;(MoO,4)(OH)4, has been
studied by Raman and infrared spectroscopy. A comparison of the Raman spectra is
made with those of the closely related molybdate-bearing minerals, wulfenite,
powellite, lindgrenite, and iriginite, which show common paragenesis. The Raman
spectrum of szenicsite displays an intense, sharp band at 898 cm ™', attributed to the
v, symmetric stretching vibration of the MoO, units. The position of this particular
band may be compared with the values of 871 cm ™' for wulfenite and scheelite and
879 cm ™' for powellite. Two Raman bands are observed at 827 and 801 cm ™' for sze-
nicsite, which are assigned to the v3(E,) vibrational mode of the molybdate anion. The
two MOy v, modes are observed at 349 (B,) and 308 em”! (A,). The Raman band at
408 cm ™' for szenicsite is assigned to the v4(E,) band. The Raman spectra are
assigned according to a factor group analysis and are related to the structure of the
minerals. The various minerals mentioned have characteristically different Raman
spectra.

Keywords: Iriginite, lindgrenite, molybdate, powellite, Raman spectroscopy,
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INTRODUCTION

The mineral szenicsite is a copper hydroxy molybdate of formula
Cu3(MoO4)(OH),.'"! The mineral is orthorhombic and is characterized by
triple chains of copper octahedra.”?! These triple chains are linked by
MoOﬁ_ and SOﬁ_ tetrahedra. The different size of these tetrahedra governs
their different linkage to the triple chains and the orientation of the Jahn—
Teller distortion of the Cu®" octahedra.'*! Burns'?! states that, “The
structure contains three unique Cu”" positions that are each coordinated by
six anions in distorted octahedral arrangements; the distortions of the
octahedra are due to the Jahn—Teller effect associated with a d” metal in an
octahedral ligand-field. The single unique Mo®" position is tetrahedrally coor-
dinated by four O anions. The Cu®"(phi)s (phi: unspecified ligand) octahedra
share trans edges to form rutile-like chains, three of which join by the sharing
of octahedral edges to form triple chains that are parallel to [001]. The MoO,
tetrahedra are linked to either side of the triple chain of Cu2+(phi)6 octahedra
by the sharing of two vertices per tetrahedron, and the resulting chains are
cross-linked through tetrahedral-octahedral vertex sharing to form a framework
structure.” The structure of szenicsite is closely related to that of antlerite,
Cu;3S0O4(OH),, which contains similar triple chains of edge-sharing Cu2+(phi)6
octahedra.!

Szenicsite is one of a number of molybdate minerals including ferrimolyb-
dite, lindgrenite, powellite, and wulfenite. Interest in minerals containing
molybdate anions has been ongoing for some considerable time,”*"*! no
doubt because these minerals are of commercial value. Interest in the
structure and formation of some of these minerals has been published.!'*~'¢!
Significant advances in the technology of Raman spectroscopy have been
made over time.!'”~?°! These advances have meant that minerals whose
Raman spectra may have been difficult to measure may now be determined.
This interest has been heightened by the use of the molybdate minerals as
catalysts.*' =1 Many of these minerals have layered structures, which can
lead to high surface active materials.'” ="

Recently, Frost et al. have used vibrational spectroscopic techniques to
study groups of related minerals.”*> 3" Raman spectroscopy has proved to
be a powerful technique for studying closely related minerals, particularly
where the minerals can be found associated with each other through
paragenesis. A previous study by the authors showed the usefulness of
Raman spectroscopy to the study of molybdate minerals.®?! In this
current paper, we report the vibrational spectra of the molybdate mineral
szenicsite and compare the spectra with those of lindgrenite
(Cu3z(MOy),(0OH),), iriginite (UO,Mo0,07 - 3H,0), koechlinite (Bi,MoOg),
wufenite (PbMoQO,), and powellite (CaMoO,) and relate the Raman
spectra to the mineral structure. A comparison of the Raman spectra to
those of more common molybdate-bearing minerals, wulfenite, and
powellite, is also made.
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MATERIALS AND METHODS
The Mineral

The mineral szenicsite was collected from the Jardinera No. 1 mine (26°4.44’'S,
69°51.4'W), which exploits secondary copper ores.''! The mine is located in
Chile’s Atacama province 5 km east of Inca de Oro, which is 80 km north of
Copiapo.!!

In this work, natural minerals were used. The origin of other molybdate
minerals used in this work is as follows:

Lindgrenite sample G16506 originated from Pinal Country, Arizona, USA

Lindgrenite sample M21019 originated from Broken Hill, NSW, Australia

Lindgrenite: Chuquicamata, Antofagasta Province, Chile

Lindgrenite: Superior Mine, Globe-Miami District, Gila County, Arizona

Iriginite: Hervey’s Range Deposit, 55 km west of Townsville, Queensland,
Australia

Koechlinite G17196 originated from Horni, Czechoslovakia

Koechlinite M47373 originated from Pittong, Victoria, Australia

Molybdofornacite M42867 originated from Eagle Eye Mine, New Water,
Arizona

Waulfenite and powellite originated from Dundas, Tasmania, Australia

Some lindgrenite and iriginite samples were obtained from The Minera-
logical Research Company (San Jose, CA, USA). The selection of minerals
from these related phases for Raman spectroscopic analysis must be under-
taken with care. Often, the crystals are found together in the same specimen.

ELECTRON PROBE MICROANALYSIS

The scanning electron microscope (SEM) used to study the mineral szenicsite
was the FEI Quanta 200 SEM (FEI, Hillsboro, OR, USA). The SEM was fitted
with an EDAX thin-window X-ray detector. Samples examined under SEM
consisted of small selected mineral chips mounted with double-sided carbon
tape on aluminum stubs. The surface of samples was coated with a thin layer
of carbon in a high vacuum coater to provide a good conductive surface.
Elemental analyses were carried out with a qualitative energy dispersive X-ray
microanalysis instrument operating at 25 kV with a 10-mm working distance.

Infrared Spectroscopy

Infrared spectra were obtained using a Nicolet Nexus 870 FTIR spectrometer
(Nicolet Thermo Fisher Scientific, Waltham, MA, USA) with a smart



02: 53 30 January 2011

Downl oaded At:

606 R. L. Frost et al.

endurance single-bounce diamond ATR cell. Spectra over the 4000-—
525 cm™ ! range were obtained by the co-addition of 64 scans with a resolution
of 4cm™" and a mirror velocity of 0.6329 cm/s. Spectra were co-added to
improve the signal to noise ratio.

Raman Microprobe Spectroscopy

The crystals of the molybdate minerals were placed and oriented on a polished
metal surface on the stage of an Olympus BHSM microscope (New Mills,
Wotton-under-Edge, UK), which is equipped with 10x and 50x objectives.
The microscope is part of a Renishaw 1000 Raman microscope system,
which also includes a monochromator, a notch filter system, and a thermoelec-
trically cooled charge coupled device (CCD) detector. Raman spectra were
excited by a Spectra-Physics model 127 Nd-Yag laser (785 nm) (New Mills,
Wotton-under-Edge, UK) and acquired at a nominal resolution of 2cm™ ' in
the range between 100 and 4000 cm ™~ '. The crystals were oriented to provide
maximum intensity. All crystal orientations were used to obtain the spectra.
Power at the sample was measured as 1 mW. The incident radiation was
scrambled to avoid polarization effects.

The Spectracalc software package GRAMS (Galactic Industries Corp.,
NH, USA) was used to display the spectra. Band component analysis was
undertaken using the Jandel Peakfit software package (Jandel Scientific,
Erkrath, Germany), which enabled the type of fitting function to be selected
and allows specific parameters to be fixed or varied accordingly. Band
fitting was done using a Gauss-Lorentz cross-product function with the
minimum number of component bands used for the fitting process. The
Gauss-Lorentz ratio was maintained at values greater than 0.7, and fitting
was undertaken until reproducible results were obtained with squared
regression coefficient of R* greater than 0.995.

RESULTS AND DISCUSSION
Theory

The mineral szenicsite is a copper hydroxy molybdate of formula
Cu3(MoO4)(OH)4[1] and is characterized by triple chains of copper
octahedra.'**! These chains are also found in the scheelite minerals and are
probably characteristic of molybdate-bearing minerals. Minerals with a
scheelite structure, like wulfenite, have site group S, and space group CS.
The crystal structure resembles that of zircon and therefore the WO, and
MoO, groups should show only four bands in the Raman spectra, two com-
ponents each of v; and v,. The scheelite structure has been shown to be one
of the few for which correlation splitting of the internal modes has been
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observed. This splitting results in v: Ag(R) + B,(inactive): v;: Ay + Bg(R)
+A(r) + By v3, vy Byt EJR) +A,r) + E(ir).PY The szenicsite
structure is expected to show similarities.

Calculations for the wulfenite structure indicate the following Raman
bands v;: A, + B, (inactive, but activated due to strain); v,: A, + B, + B,; v3,
V4 By + E,, most of which are easily observed for wulfenite (and scheelite).
The vi(A,) band is detected at 871 cm” ! and, although the corresponding
v1(B,) vibration should be inactive, a minor band is observed around
858 cm™ ' It may be possible that this band becomes visible as a weak band
due to strain in the crystal. This band for synthetic powellite is observed in
the infrared spectrum at 849 cm™'.** For powellite, the bands are observed
at 879 and 847 cm™ . Interestingly, Farmer has reported the v,(A,) band in
the Raman spectrum for synthetic powellite at 880 cm ™' and for wulfenite at
872 cm™ "1 A summary of the results of the Raman spectra of ferrimolybdite,
lindgrenite, powellite, and wulfenite is given in Table 1.1°*

Table 1. Raman spectroscopic analysis of wulfenite, powellite,
lindgrenite, iriginite, and koechlinite

Waulfenite  Powellite  Lindgrenite  Iriginite =~ Koechlinite

982
871 879 929 965 843
858 847 883 950
837 888
826
818
768 794 795 693 797
745 772 668 773
715
513 493 487
462 456 398 457 401
351 403 354 413 349
319 392 335 373
337
324 300 301 321
267 284 246 293
281
268
195 196 210 198 228
198 195
188
166 159 167 164 154
152 155 141
139

120
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Figure I.  Raman and infrared spectrum of szenicsite in the 500 to 1200 cm ™' region.

The Raman and infrared spectra of szenicsite in the 500—1200 cm ™

region are shown in Fig. 1. The results of the spectral analysis of szenicsite
are presented in Table 2. The Raman spectrum is characterized by an
intense sharp band at 898 cm™' with a band width of 4.9 cm™'. This Raman
band is assigned to the vi MoO, symmetric stretching vibration. The position
of the band may be compared with the value of 871 cm ™" for wulfenite and
scheelite and 879 cm ™! for powellite. The band is observed at 883 cm ™' for lind-
grenite and 888 cm ™' for iriginite. No infrared band for szenicsite is found at this
position. An infrared band is observed at 941 cm™' with the corresponding
Raman band at 928 cm™!. These bands are attributed to the v; (SO,)*~
symmetric stretching vibration. The observation of these bands is not unexpected
as szenicsite can show isomorphic replacement of the molybdate by sulfate. The
mineral is closely related in structure to the sulfate mineral antlerite. The bands
between 1008 and 1116 cm ™! may be ascribed to the vy (SO,)*~ antisymmetric
stretching vibrations.

For the v3(E,) mode of the molybdate anion, Ross*® has reported two
bands for wulfenite at around 748 and 772 cmfl, which matches well with
the values observed in the Raman spectrum of wulfenite at approximately
745 and 768 cm™ P71 Two bands are observed at 827 and 801 cm™ ' for
szenicsite and are assigned to this vibrational mode. For synthetic CdMoOQy,
however, only one Raman band has been reported at around 759 cm L. The
corresponding v3(B,) is found at 815 cm” L. The v3(E,) bands are observed
at 795 and 772 cm™ ! for lindgrenite, 693 and 668 cm™ ! for iriginite, and
797 and 773 cm ™! for koechlinite. The spectrum of iriginite is complicated
by the presence of Raman bands due to the uranyl units. This accounts for
the additional bands observed for iriginite, as shown in Table 1. It is
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Table 2. Table of the results of the infrared and Raman spectra of szenicsite
IR Raman
Center cm ™! FWHM cm ™! (%) Center cm™ ! FWHM cm ™! (%)
3694 15.5 0.97
3621 8.6 0.35
3567 4.4 0.17
3559 4.8 0.87 3559 53 3.73
3555 9.3 2.24
3546 9.8 0.40
3539 59 0.32
3518 9.2 5.26 3518 44 3.23
3506 5.0 0.41
3503 5.7 1.13
3500 5.0 0.68 3500 10.0 0.62
3497 7.2 0.69
3496 27.3 11.25
3471 19.7 1.47
1116 14.9 0.39
1090 21.7 2.42
1073 16.2 1.15
1049 46.1 2.83
1030 21.4 2.29
1008 22.7 1.09
941 17.1 2.33 928 15.3 7.08
909 515 3.24
903 6.2 5.27
902 1.0 0.40
898 4.9 18.33
895 53 12.45
894 7.5 8.97
878 10.6 0.65 873 65.8 1.29
859 25.4 3.05 843 10.3 0.70
838 8.6 0.95
827 18.6 3.59
810 10.2 0.40
797 60.1 12.88 801 13.5 1.07
783 20.6 2.48
746 73.4 20.54
673 57.9 11.72 687 19.6 1.01
611 59.2 9.04
560 47.7 2.47
475 9.5 0.64
420 11.6 16.28

(continued)
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Table 2. Continued

IR Raman
Center cm™ ! FWHM cm ™! (%) Center cm ™! FWHM cm ™! (%)
349 18.2 5.10
308 129 1.25
280 16.4 345
211 7.5 1.30
147 9.0 1.00
105 6.2 0.39

probable that the two bands at 826 and 818 cm” ! are due to the 12 (U02)2Jr
symmetric stretching vibrations and the two bands at 965 and 950 cm ™' to
the v3 antisymmetric stretching vibrations of the (UO»)*" units.

The Raman spectrum of the low wavenumber region of szenicsite is
shown in Fig. 2. The two v, modes are observed at 349 cm ! (B,) and
308 cm ! (Ap). A comparison of the data for the natural minerals is
given in Table 1. Farmer reports these bands for the Raman spectra of
wulfenite at 354 and 321 cm~ '.*> Three bands were given for synthetic
powellite at 404, 394, and 326 cm” LB The expected v4(E,) around
384 cm~ ' is absent in the spectrum of natural wulfenite. The band at
308 cm ™' for szenicsite is assigned to this vibrational mode. Two bands
were listed at 820 and 770 cm ™' for wulfenite and two bands at 847 and
796 cm ™! for synthetic powellite.****! The bands of wulfenite at 351 and

——408
Raman (298K) Szenicsite

-y
‘A
=
2
&
211
/ 147 105
/\ A
T —t— —t— t 1 —t— —t— —t— T
S00 450 400 350 300 250 200 150 100

1
‘Wavenumbers /cm

Figure 2. Raman spectrum of szenicsite in the 100 to 500 cm ™' region.
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319 cm™ ! are assigned as either deformation modes or as r(B,) and 6(A,)
modes of terminal MO, units. These bands are observed at 355 and
320 cm ™' for powellite. The band at 462 cm™' has an equivalent band in
the infrared at 455 cm ™!, assigned as 8,4(A,) of the (M,0,), chain. The
band at 476 cm ™! for szenicsite is also attributed to this vibration. The equiv-
alent band for powellite is observed at 456 cm™'. The band at 513 cm ™' for
powellite is assigned as vsm(B,) of the (M,04), chain. The band for
powellite at 794 cm ™' is interpreted as an antisymmetric bridging mode
associated with the molybdate chain. The bands for wulfenite at 768 and
745 cm™ ! are associated with the antisymmetric and symmetric A, modes
of terminal MO,. Additional bands for wulfenite were observed at 195 and
166 cm™ !, assigned as translational modes of Pb-O and MO,. Three bands
observed at 196, 159, and 152 cm™ ! for powellite are assigned to translational
modes of Ca-O and MOy.

The Raman spectrum of szenicsite in the 3400 to 3600 cm ™' region is
shown in Fig. 3. The Raman spectrum shows a single band at 3559 cm ™"
with additional bands at 3518 and 3503 cm™'. The 3559 cm™ ' band in the
infrared spectrum shows complexity with multiple bands at 3567, 3559,
3555, and 3539 cm™ . The observation of multiple bands for the OH units
suggests that not all the OH units are identical. A band at 3518 cm™' is
common in both the Raman and infrared spectra. A low-intensity band at
3503 cm™ ' is observed in the Raman spectrum. Significantly greater
intensity is observed in the infrared spectrum with a band maximum at
3496 cm ™!, One possible assignment is that these bands are due to adsorbed

Infrared Szenicsite

Raman (298K) « 3359

Intensity

y | N 1 y I n v N
L i e e NS I e e e s s e e e B B e S B LA S e s s s e e e e

3600 3580 3560 3540 3520 3500 3480 3460 3440 3420 3400

1
Wavenumbers /cm

Figure 3. Raman and infrared spectrum of szenicsite in the 3400 to 3600 cm ™'

region.
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or bonded water. The phi ligands (see introduction above) may be OH units
but could also be water molecules.

CONCLUSIONS

The molybdenum-bearing minerals szenicsite, lindgrenite, iriginite, and
koechlinite have been studied by Raman spectroscopy. A comparison is
made with the Raman spectrum of the more common minerals wulfenite
and powellite. The Raman spectra are assigned according to a factor group
analysis and related to the structure of the minerals. These minerals have
characteristically different Raman spectra.

The Raman spectrum of the mineral szenicsite shows an intense sharp
band at 898 cm ™" attributed to the v, symmetric stretching vibration of the
MO, units. The position of the band may be compared with the value of
871 cm ™' for wulfenite and scheelite and 879 cm ™' for powellite. The band
is observed at 883 cm™ ' for lindgrenite and 888 cm™ ' for iriginite. Two
Raman bands are observed at 827 and 801 cm™' for szenicsite and are
assigned to v3(E,) vibrational mode of the molybdate anion. The two MO,
v, modes are observed at 349 cm ! (Bg) and 308 cm ! (Ag). The Raman
band at 408 cm ™~ ! for szenicsite is assigned to the v4(E,) band.

The spectrum of iriginite is complicated by the presence of Raman bands
due to the uranyl units. These units exhibit intense Raman bands at 965, 950,
826, and 818 cm ', which are attributed to the antisymmetric and symmetric
stretching modes of the UO, units, respectively. The Raman bands at 687 and
668 cm™ ' for szenicsite are attributed to antisymmetric and symmetric A,
modes of terminal MO, units. Similar bands are observed at 797 and
773 cm ™! for koechlinite and at 798 and 775 cm ' for lindgrenite. It is
probable that some of the bands in the low wavenumber region are attributable
to the bending modes of these MO, units.
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